

DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT DRAFT

#### Superfund Division Directors Meeting

Managing a Cleanup in the Face of Public Health Effects and Uncertain Endpoints

The Libby, Montana Superfund Site

Baltimore, Maryland May 28, 2008



# Superfund Remedial Process

- Traditional Approach
- Baseline Risk Assessment helps g uide clean up decision
- Deciding on a Cleanup Option (Nine Evaluation Criteria)
   Overall protection of human health and environment
- Compliance with a pplicable or relevant and appropriate requirements
- Long term effectiveness and permanence
- Reduction of toxicity, mobility, or volume Short-term effectiveness
- Implementa bility
- State acceptance
- Community acceptance





# But how do you manage a cleanup when...

- Significant exposures are occurring among the population;
- Clear evidence of attributable, measurable disease in exposed population is present;
- Available toxicity data are highly uncertain, inapplicable, or absent?

Consider the first evaluation criteria:

"Overall protection of human health and the environment."

# Initial Phase Cleanups are driven by exposures

- Importance of Conceptual Site Model (CSM)
- Consider multiple pathways of exposure
- Consider multiple routes of exposure
   Inhalation, ingestion, etc.
- Don't ignore cumulative exposure
- Identify site-specific exposure parameters
  - Exposure frequency, exposure duration, etc.



## Conceptual Site Model (CSM)

- Identifies origin of contamination
- Illustrates movement through the environment
- Identifies receptors & routes of exposure
- Describes potential exposure pathways
- Helps guide development of the Baseline Risk Assessment

Refer to handout of CSM for Libby OU4 here if desired.

### Step 1: Reduce Exposures

- Use CSM to help rank exposures
  - Source material
  - Significant exposure pathways
- Tackle worst first
- Goal is to eliminate or reduce significant exposure pathways
- Collect representative data for suspected significant exposure pathways lacking data

  In Libby, these were/are

  Outdoor ambient air monitoring

  Indoor/outdoor activity-based sampling

  Evaluation of tradesperson exposures



#### Step 2: Address Public Health **Effects**

- Clear evidence of attributable, measurable disease in exposed population is present
- Work with other public health agencies to obtain support for affected population
  - Agency for Toxic Substances and Disease Registry

## Step 3: Address Shortcomings of **Toxicity Data**

- Typical approach to remediation
  - Are exposures above or below levels of concembased on known toxicity?
- What if available toxicity data are highly uncertain, inapplicable, and/or absent?
- How to determine what that level of concern is when current toxicity values are of limited applicability?





### **Toxicity Assessment**

- Epidemiological studies
  - Consider high level & low level exposures in population
  - Biomarkers of exposure
  - Evaluate efficacy of cleanups
- · Focused toxicity studies
  - Design for most powerful predictive capa bilities
  - Screening evaluations
  - In vitro studies
  - In vivo studies
  - Mode of action paradigm
  - Internal dosimetry



#### Using Existing but Nonspeci fic Toxicity Information

- Advantages
  - Allows interim or screening level evaluation of risks to help guide cleanup approach
  - Enables progress in cleanup prioritization
  - Based on best a valiable science
- Disadvantages
  - May set precedent for future or other national cleanups
     May over- or underestimate risks
- Public acceptance may or may not be an issue

# **Toxicity Data Uncertainties**

- Chemical specific uncertainties
   For example, for Libby Amphibole, mineralogy
   If dealing with asbestos, must also consider morphology
- Uncertainties in derivation of existing values
   Historical methodological limitations (e. g., sampling/analysis)
   Exposure reconstruction
   Disease classification
- · Alternate models for evaluation of risk

## References

■ Include reference to TRW fr amework